Мир сервисов

О нас Контакты Форум Подписка rss




Расширенный поиск


26.04.2018 22:30





  • 26 декабря

Музыкально-поэтический фестиваль «Поём Иерусалим». Москва

  • 27 декабря

Презентация книги Олеси Николаевой «Православие и творчество». Москва

  • 27-29 декабря

Официальный визит Патриарха Кирилла в Болгарскую Православную Церковь

  • 28 декабря

Лекция "Крест, Дракон и Самурай - Трудности Евангелизации: Проблема китайских и японских обрядов". Москва

  • 28 декабря - 11 мая

Выставка «Патриарший центр духовного развития детей и молодежи» в Манеже

  • 14 мая

Презентация книги «Мы только стоим на берегу…», посвященной Михаилу Кулакову. Москва

  • 17 мая

Круглый стол «Проблемы современной Церкви», посвященный 100-летию со дня рождения архиепископа Михаила (Мудьюгина). Москва

  • 18 мая

Презентация книги А.И. Шмаиной-Великановой «Введение в изучение Книги Руфи. Перевод. Комментарий» и круглый стол «Некоторые проблемы комментирования священного текста». Москва

  • 20 мая

Конференция «Сорок сороков: Никольские храмы Москвы».Москва

  • 15 июня - 26 августа

Выставка "Иконостас Кирилло-Белозерского монастыря" в Музеях Кремля. Москва

Все »








Поиск

11.03.2018 00:12
Патриарх Кирилл совершил всенощное бдение в Стефано-Махрищском монастыре

11.03.2018 00:02
В Лос-Анджелесе состоялось погребение старейшего по хиротонии клирика Русской Зарубежной Церкви













15 Февраля 2019
Центр этой окружности называется инцентром треугольника и расположен на пересечении его биссектрис. Первоначально даже наугад, - это если примеры вопросов олимпиад не опубликованы. Благо цена опыта совсем не велика: средняя стоимость олимпиады - 100 руб. По определению, вписанной в треольник окружностью является окружность, касающаяся всех его сторон. Она наибольшая из тех, которые могут разместиться внутри треугольника. Да, они разные, - эти олимпиады; составляют их авторы разного профессионального уровня. Если родители самосельно подают заявки на участие, то целесообразно самим сделать выбор из 3-5 предложений (сайтов). Раствором циркуля равным этой величине строится вписанная окружность. Не сложно подсчитать миниое количество проведенных линий в данном построении. Их всего 12, по 4 на построение двух биссектрис, 3 - на перпендикуляр и одна собственно на проведение самой окружности.В последнее время как грибы после дождя стали появляться сайты дистанционных предметных олимпиад для учеников 1-11 классов. Причем, самого разного уровня: от локальных - в рамках конной школы - до всероссийских и международных.Участие всё равно окупится полученным ребенком опытом, знаниями, мотивацией. Так что польза будет в любом случае. Далее с вопросами и с результатами можно подойти к профму учителю за советом, на чем же остановиться. Перпендикуляры, восстановленные из сторон треугольника в точках касания вписанной окружности, тоже пересекаются в инцентре. На этом свойстве основан предлагаемый метод построения вписанной окружности. Родители порой задаются вопросом: есть ли смысл участия в таких мероприятиях и какие выбрать ... Ответ очень многих педагогов однозначный: участвовать необходимо. Для начала хотя бы попробовать в одной-двух, чтобы понять, о чем речь. А вот с какими иметь дело?Вначале рассмотрим классический алгоритм построения, осуществляемый в два этапа. Первый шаг построения - проведение биссектрис углов треугольника (достаточно задействовать всего два угла) для опрения центра окружности. На втором этапе определяется радиус вписанной окружности. Из точки пересечения биссектрис проводится перпендикуляр к одной из сторон треугольника. Длина полученного отрезка равна искомому радиусу.
 
Мнение редакции может не совпадать с мнением авторов отдельных материалов.
© 2018 mir-google.ru